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Abstract. JavaScript execution and UI rendering are typically single-
threaded; thus, the execution of some scripts can block the display of
requested content to the browser screen. Web Workers is an API that
enables web applications to spawn background workers in parallel to the
main page. Despite the usefulness of concurrency, users are unaware of
worker execution, intent, and impact on system resources. We show that
workers can be used to abuse system resources by implementing a unique
denial-of-service attack and resource depletion attack. We also show that
workers can be used to perform stealthy computation and create covert
channels. We discuss potential mitigations and implement a preliminary
solution to increase user awareness of worker execution.
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1 Introduction

Adobe Flash is an example third-party plugin that extends functionality like
video streaming to web applications. HTML5 eliminates this necessity by pro-
viding new APIs that improve core functionality of the web browser (herein
browser). Web Workers is one such API specified by the World Wide Web Con-
sortium (W3C) [11] and Web Hypertext Application Technology Working Group
(WHATWG) [10]. Web Workers enable web applications to spawn background
workers (i.e., threads) in parallel to the main page. Workers are intended for
long-lived and computationally intensive operations that would otherwise block
the UI.

Encryption, motion detection, and simulated annealing are use cases for
workers. Any application that has to have its execution broken up to avoid being
prematurely terminated by the browser is a candidate for workers.

Despite the usefulness of concurrency in JavaScript, permissive execution of
workers enables stealthy computation. Workers are instantiated unbeknownst
to the user of a web application and can perform any number of computations.
An attacker can cause a user to perform work for her by exploiting a cross-
site scripting (XSS) vulnerability on a legitimate website or by placing an
advertisement that hides the work in a worker.
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We demonstrate the feasibility of stealthy computation using workers by
implementing a distributed password cracker that uses the Web Workers API.
We can compute 500,000 MD5 hashes per second using the Chrome 50.0.2661.94
browser on a Mid-2013 MacBook Air. We also implement a denial-of-service
(DoS) attack that is unique to how OS X manages virtual memory. We define
wasteful stealthy computation that exploits garbage collection mechanisms in
Chrome, Firefox 46.0.1, and Safari 9.1. The execution of this computation results
in high CPU and memory utilization that eventually fills the swap partition and
causes a deadlock.

We target the Android browser and Android Chrome browser to perform
wasteful stealthy computation on a mobile platform. We find exploiting garbage
collection results in a resource depletion attack against the browsers. In fact,
55% of CPU load, 45% of memory usage, and an approximate 4�F increase in
temperature was the direct result of five minutes of stealthy computation. We
did not attempt this on the mobile Safari browser for iOS but believe that it is
also susceptible because its operating system counterpart is. The mobile Safari
browser is not susceptible to the DoS attack because it manages virtual memory
di↵erently than OS X.

A natural criticism to stealthy computation using workers is that a worker is
unnecessary to perform attacker-controlled computation such as the DoS attack
mentioned above. While the UI thread can carry out this type of computation, the
thread becomes unresponsive and is later terminated by the browser. JavaScript
Window Timers like setTimeOut avoid blocking the UI thread by executing code
at specified time intervals. However, we find that our stealthy computation still
results in unresponsiveness and later termination when using setTimeOut.

Lampson, when defining the confinement problem, first introduces covert
channels as information leakage between processes that facilitate communica-
tion [14]. Covert channels are di�cult to identify because other processes often
obscure them. For example, CPU cycles can be used as a covert channel and it is
a↵ected by every single process on a system. Further, application firewalls and
anti-virus software typically block non-whitelisted ports and anomalous behavior,
not profile software system resource utilization.

We describe and implement a covert channel that is not unique to workers
but is easily implemented using them. Our covert channel uses CPU and memory
throttling to transmit bits to an unauthorized application. We find that CPU
throttling is noisier than memory throttling because other processes can obscure
our covertly transmitted bits (i.e., a random peak can corrupt bits or semantic
structures such as a preamble). We throttle memory by exploiting garbage
collection to create a peak and then terminating the web worker to force garbage
collection.

This covert channel enables an attacker to transmit data from a website to an
application on the user’s system. This application may be untrusted or malicious.
The attacker can send command-and-control instructions, binary updates, and
sensitive data about the user’s browsing without detection as browsers typically
use a range of system resources depending on viewed content.
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We scanned 7000 websites from Alexa’s top sites to determine the preva-
lence of worker use. We found that 1.2% of them use workers to perform some
computation. Websites such as yahoo.com, usbank.com, and mediafire.com use
workers for various reasons. For example, usbank.com uses a worker defined in
foresee-worker.js to compress session event logs.

In this paper, we are concerned with using the Web Workers API to create
workers that enable stealthy computation and covert channels. We demonstrate
the feasibility of these by implementing our own distributed password cracker
using workers, a DoS attack against OS X, a resource depletion attack against
Android, and a covert channel using memory throttling. We provide the necessary
background for JavaScript code execution and Web Workers, discuss related work
focused on HTML5 vulnerabilities, and we give the first mitigation strategy for
the misuse of workers.

2 Background

Browsers typically have one thread that JavaScript and the UI share. Therefore,
UI updates are blocked while the JavaScript interpreter executes code and vice
versa. A shared task queue enables asynchronous execution of JavaScript and UI
updates, allowing either to execute when the thread is available. Asynchronous
execution does not solve the problem of an arbitrary script taking unusually
long. The browser attempts to terminate any script that takes longer than some
threshold regardless of its purpose or importance. The user is aware of this when
the UI freezes. Not much later, the browser presents a status (i.e., terminate or
continue) or crash message.

The browser’s approach to ending long-running scripts is undesirable because
it provides no context per the scripts execution. The user is unaware of what
the script is meant to do and how long it has been running. Web application
developers approach this issue by leveraging asynchronous execution and dividing
their scripts into logical chunks that execute on some period. This method does
not benefit from parallel execution where a computation is uninterrupted until it
finishes.

HTML5 addresses these limitations with the Web Workers API. This API
enables web applications to spawn background workers in parallel to the main
page. Workers are unable to access the Dynamic Object Model (DOM) or the
callers (i.e., parent object) variables and functions. Workers are instantiated as
one of two types: shared or dedicated.

Shared workers can be accessed by multiple web applications but dedicated
workers cannot. Web applications instantiate both shared and dedicated workers
by providing a script object to the Worker constructor. The script object is either
an externally loaded file or defined inline as a string description of the worker.

The string description is provided as input to the blob constructor, a file-like
object, and is referenced by an output URL handle. This URL handle is provided
to the Worker constructor. Listing 1.1 is an example inline instantiation. We note
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that inline instantiation is important to our threat model because attackers that
inject malicious scripts must be able to inject a worker.

<script id="mw" type="javascript/worker">
self.onmessage = function(event) {

self.postMessage ({’msg’: ’hello.’ ,});
}

</script >
<script language="javascript">

var blob = new Blob([ document.querySelector(’#mw’).
textContext ]);

var m_worker = new Worker(window.URL.createObjectURL(blob))
;

</script >

Listing 1.1: Instantiate worker using blob.

Workers support communication with each other and their parent object via
message passing. The onMessage method listens for messages and upon receiving
one it will call the postMessage method to send a message. Workers continue to
listen for messages until the user navigates away from the web application, or
the parent object calls the terminate method on the worker. Terminating a web
worker causes garbage collection on all allocated memory.

3 Threat Model

We use the definition of a web attacker and gadget attacker by Akhawe et al. [4]
to define an attacker that maliciously misuses workers. A web attacker operates
a malicious web application but has no visibility into the network beyond the
requests directed to her application. A gadget attacker can inject content into
otherwise legitimate web applications.

A web attacker that misuses workers hosts a web application with a mecha-
nism for generating tra�c (e.g., misleading domain name or social engineering).
Every time a user visits the web application, stealthy computation is performed
via a worker or workers. A gadget attacker that misuses workers exploits web
vulnerabilities such as cross-site scripting to inject her workers. She may also
purchase a web advertisement and bundle her workers in the ad. A user that
visits a legitimate site will now perform some stealthy computation.

A web attacker is considered an insider threat; for example, a web application
administrator. A gadget attacker is an outside threat. She is simply a web
application user. We consider both attackers to be unsophisticated as neither
has visibility or control of the network. Also, both attackers rely on generally
accessible tools such as a laptop, internet access, and at most a web server.

The goals of both a web attacker and gadget attacker that misuse workers
include: performing stealthy computation, mounting a DoS or resource depletion
attack, and establishing a covert channel with an untrusted or malicious applica-
tion. While we do not describe how to install such an application, we consider all
typical malware delivery methods (e.g., flash drives, e-mail, etc.).
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4 Web Worker Primitives

While creating stealthy computation is as simple as writing function x, a wasteful
computation needs to exploit garbage collection mechanisms for multiple browsers.
Covert channels also require a mechanism for throttling a system’s CPU and
Memory. We introduce three primitives to achieve wasteful stealthy computation:
infinite loop sequences, CPU throttling, and memory throttling.

var cpu_work = function () {
var scratch = [];

// Fill the ArrayBuffer with random values.
for(var j = 0; j < 1024; j++) {

scratch.push(Math.random ());
}

var firstArr = new Uint8Array(scratch);
var secondArr = new Uint8Array(scratch);

// ArrayBuffer concatenation.
var concatBuf = new Uint8Array(firstArr.byteLength +

secondArr.byteLength);
concatBuf.set(new Uint8Array(firstArr), 0);
concatBuf.set(new Uint8Array(secondArr), firstArr.length);

}

Listing 1.2: Browser CPU throttling.

Infinite Loop Sequences. An infinite loop is a sequence of instructions which loops
endlessly because the boolean condition never changes (e.g., it always evaluates
true). If an infinite loop is executed by the JavaScript interpreter, the browser
UI will freeze due to blocking on the shared thread. However, blocking does not
occur if this loop is executed in a worker.

We use an infinite loop such as while(true){} to perform a wasteful stealthy
computation. This type of computation enables CPU and memory throttling.
Again, the execution of this loop is undetected by the user because it does not
block the UI thread.

CPU Throttling. Executing an empty infinite loop alone will throttle a modern
CPU. We achieve throttling by looping on intensive operations such as recursive
function calls and large data manipulation to quickly achieve maximum CPU
utilization. Listing 1.2 implements a data manipulation loop that randomly fills
two 1024-byte arrays and then concatenates them.

Memory Throttling. Throttling memory is browser specific as it exploits corner-
cases not yet handled by the browser’s garbage collection. We note that the
browser does, in fact, do garbage collection correctly; however, the process is
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approximate as deciding whether memory can be freed is undecidable. We use
this knowledge to our advantage to discover browser-specific memory leaks and
use them to throttle system memory.

In Listing 1.3 we use a technique outlined by Glasser [9] to demonstrate a
memory leak in Firefox. This technique relies on JavaScript closures. Specifically,
both unused and bucket are both defined inside of RD ATTACK FIREFOX SAFARI

scope, and if both functions access the variable leak it’s imperative that both
get the same object. So leak is never garbage collected.

In our experimentation with these primitives, we crashed Firefox and Chrome
when throttling CPU and memory. We mitigate this by using the worker method
terminate(). This method helps us avoid crashing the browser and completes
our throttling primitives by exposing a mechanism for quickly freeing system
resources.

var bucket = null;
var RD_ATTACK_FIREFOX_SAFARI = function () {

var leak = bucket;
var unused = function () {

if (leak) {
var hole_in_bucket = 1;

}
};
bucket = {

longStr: new Array (10000000).join(Math.random ()),
someMethod: function () {

var hole_in_bucket = 2;
}

};
// Placeholder for doing some repetitive operation.
cpu_work ();

};

Listing 1.3: Firefox memory throttling.

5 Stealthy Computation

We demonstrate the feasibility of stealthy computation using workers by imple-
menting a distributed password cracker that uses the Web Workers API. We
implement the main HTML page to define a target MD5 password hash, a worker
instantiation, and an event listener to receive the result of password cracking
(i.e., an MD5 collision was found).

The worker instantiation is on input md5cracker.js. This worker script
defines the MD5 hashing algorithm, a dictionary download method, and the
event listeners start and stop.

The start listener waits to receive the onMessage start string. When it
receives the string, it downloads an array of passwords using the method
importScripts(). This method synchronously imports a script into the worker’s
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Fig. 1: OS X DoS attack.

scope. We use it to import an array of passwords because we want the worker
to be self-contained. Specifically, if an attacker should inject a worker or upload
an advertisement with a worker, she can not rely on the calling parent object to
pass in any data such as an array of passwords.

After downloading the array, the worker selects a random index into the array
and begins to hash each password and compares it to the target hash. If it finds
a collision, it returns the result to the parent object, or it could use a web socket
to send it elsewhere (e.g., the attacker’s server).

The stop listener simply kills the worker once it is no longer useful.

We send 1 million passwords to the worker using importScripts which is
approximately 13MB. This step adds approximately 50% latency on the dataset
and takes 3 seconds to download. We can minimize this time by compressing the
password array and partitioning it into multiple arrays. The password cracker
performs 500K hashes per second on a Mid-2013 MacBook Air.

The average user visits a website for no longer than 15 seconds. Thus, one
might think that workers that perform stealthy computation do not have much
time to carry out any worthwhile computation. We find that media streaming
sites such as Youtube or SoundCloud are ideal web applications for stealthy
computation because users will remain on the page for a time much greater
than 15 seconds. In addition, this technique has been proven via projects that
unintentionally do stealthy computation using workers such as bitcoin mining [6].
We are the first, that we know, to point out the scope (i.e., all modern browsers)
and potential of this type of computation.
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5.1 Denial-of-Service

We use our loop and memory throttle primitives to mount a DoS attack against
any 64-bit OS X device. This DoS is unique to OS X because of how virtual
memory is handled. Specifically, OS X can grow its swap to the maximum
available size of the backing store – the portion of hard disk responsible for
storing virtual memory pages. On 32-bit systems the backing store is limited to 4
gigabytes, whereas 64-bit OS X systems can use up to 18 exabytes. Therefore, if
we exploit garbage collection for an extended period, OS X will continually write
out memory pages until deadlock. The period required for deadlock depends on
the amount of memory leaked and the available space on disk.

In one test on a Mid-2013 MacBook Air with 50 GB free, 10 MB was leaked
each loop iteration and deadlock occurred after 15 minutes. We can adjust the
memory throttle primitive to allocate more memory each iteration and speed up
deadlock.

This attack is successfully executed on Firefox and Safari only (specifically,
versions Firefox 46.0.1 and Safari 9.1 (11601.5.17.1)). In Firefox, deadlock is
always achieved since the upper-bound on paged memory is the full 18 exabytes.
Deadlock is only achieved in Safari if the user has less than 32 GB available on
disk. Otherwise, the browser kills the process.

We note that running the attack in a worker results in no UI indication; the
user is unaware of the DoS attack. This is especially poignant in Firefox and
Chrome, where running the attack without a worker results in an ‘Unresponsive
Script’ notification. In Safari, no indication is given regardless of the payload’s
delivery (via UI thread or web worker). We therefore find that Safari and Firefox
are susceptible to this attack, with Firefox’s viability being dependent on workers.

The steadily growing swap in Figure 1 depicts our exploitation of garbage
collection in Firefox and Safari. In the upper-left we have a normal profile of the
browser’s swap and CPU loads. The low-CPU section corresponds to no browser
interaction on a static page. In the upper right and central figures, the scale for
swap usage is now 10 GB. In the upper-right, swap is filled until deadlock occurs
around 24 GB (the max available on the test system). In the central figure, swap
is filled until it hits the 32 GB threshold, at which point Safari kills the process.
In both cases, when deadlock occurs, OS X needs to be hard rebooted in order to
recover. Fortunately, disk space is recovered and the swap returns to its original
size.

5.2 Resource Depletion

The mobile Chrome browser also supports the Web Workers API. Figure 2 depicts
user memory usage as it steadily increases from the stealthy computation. The
over usage of memory results in I/O waiting toward the end of our experiment.
Stealthy computation can exacerbate resource depletion as it uses system resources
to perform wasteful work. Figure 3 illustrates resource depletion in terms of
its e↵ects on the battery. When the attack is initiated, battery temperature
immediately spikes more than 8� F (in orange). Furthermore, projected battery
lifetime drops significantly.
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Fig. 2: Android Chrome resource depletion attack.

Fig. 3: Android Chrome resource depletion attack.

6 Covert Channel

A covert channel is a communication mechanism for two processes that are not
supposed to be able or allowed to communicate. For example, Lampson first
described a covert channel based on a program’s e↵ect on system resources [14].
The program attempting to transmit information can vary resources such as
I/O or memory, and the receiver will observe the change. While this is a noisy
channel, it can be corrected given a message encoding. Other covert channels
include cachememory bus interactions [19], CPU scheduling [12], and network
packets and protocols [7, 15]. These covert channels are timing channels because
they transmit information by modulating system resources. Storage channels
require access to storage locations whereby the transmission of information is
written and read from the filesystem.
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We use our CPU and memory throttling primitives to create a covert channel
between a web application and some untrusted or malicious application on the
user’s system. The application is a desktop or mobile application that only
requires access to monitor system resources, which is an unprivileged operation.

Application firewalls and anti-virus software can block TCP connections to
non-whitelisted ports and anomalous behavior. Our covert channel circumvents
these technologies by not using a standard channel like TCP. Further, if the
covert channel could be identified, the result would be to block the entire browser.
An attacker can use this channel to deliver command-and-control instructions,
binary updates, and sensitive data about the user’s browsing.

The use of both CPU and memory throttling primitives and the unauthorized
application constitutes a timing channel. The web application, or injected script,
transmits information about the user’s browsing to the unauthorized application.
Like other timing-based covert channels, this is di�cult to detect. However, the
covert channel cannot transmit information to other JavaScript scripts because
the browser isolates execution and disallows access to system resources with
sandboxing.

We first try CPU throttling to observe messages with a simple structure.
Specifically, we do not define a pre or postamble; rather, we define a period in
which to observe a bit based upon a CPU usage spike. We find that the CPU
channel is noisy, as seen in Figure 4, and we can only achieve good accuracy by
employing a high sampling rate. Unfortunately, we use PSUTIL to get current
CPU usage and it imposes a sampling rate with a minimum bound of 100
milliseconds. Also due to JavaScript runtime limitations, anything less than one
millisecond isn’t feasible.

We attempt to minimize CPU noise by increasing the length between CPU
spikes to 500 milliseconds and 1 second. We can obtain bits in the covert channel
but under ideal conditions. For example, if any other work is done in the browser
it significantly impacts our ability to discern relevant CPU spikes.

Next, we try our memory throttling primitive. Memory usage is a more
deterministic channel and thus less noisy than CPU usage. This makes it more
viable as a covert channel. We use our memory throttling primitive to fill a 40MB
array and then clear the memory with a terminate worker method call. We can
successfully send 1 bit per 5 seconds. We send the bits for “hello world” in Figure 4.
Unlike the CPU covert channel, the memory covert channel is usable when the
user browses the internet or streams videos. This finding is a consequence of the
amount of memory used which far exceeds the memory needed to bu↵er a video
in our tests.

We note that our covert channel does not require a web worker. However,
when executing the covert channel in the UI thread, the browser is noticeably
less responsive due to the looping execution of the memory primitive. Moreover,
we find that, unlike workers, we do not have a mechanism to force garbage
collection and thus create a clean signal (i.e., discernible peaks in memory). We
also implement the covert channel with setTimeout and find it to be intractable.
Web workers are una↵ected by these limitations. Our ability to force garbage
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Fig. 4: Memory covert channel sending hello world.

collection by terminating the worker allows for distinct, deterministic memory
peaks, as shown in Figure 4.

We implement and test this covert channel on OS X 10.11.4 using the Firefox
46.0.1 and Chrome 50.0.2661.94 browsers. The covert channel is ine�cient re-
garding channel bandwidth; we can send approximately 1 bit per 5 seconds. We
can speed this up by reducing the amount of memory throttled (e.g., less than
2GB peaks), by increasing the size of the leak to fill memory faster, and by using
multiple workers to concurrently fill swap.

7 Potential Mitigations

The challenge for the Web Workers API is how to inform users a worker is
executing, what the intent of the execution is, and how the execution is impacting
system resources. We assert that the most e↵ective solution is to provide fine-
grained controls for workers similar to browser pop-up controls, and to restrict
the Web Workers API in the ECMAScript specification. We envision a system
administrator or user with an understanding of computer processes interacting
with a dialog box that lists the options: Do not allow any site to execute compu-
tationally intensive scripts, Inform me when any site executes computationally
intensive scripts (Recommended), Allow all sites to execute computationally
intensive scripts.

In the interim, we implement a browser extension to mitigate worker stealthy
computations partially. This mitigation is partial because the browser extension
only informs the user of when a worker has executed. If the worker is named
appropriately, the user is provided with some context of the workers intent, but
name mangling and poor coding practices will undo this. We call our browser
extension wAudit.
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wAudit is a Google Chrome content script. Content scripts use the Document
Object Model (DOM) to read and modify details of a visited web page. These
scripts, however, cannot use or modify variables or functions defined by the
visited web page. For wAudit to determine whether a worker exists it must be
able to the later.

We programatically inject wAudit as a script into visited web pages us-
ing document.createElement. This function creates an HTML script element
that we append to the document object’s root element using the function
document.documentElement.appendChild. The injected script recursively searches
all DOM objects and identifies object types of [object Worker].

The script alerts the user if it finds a worker or workers by drawing a banner
at the bottom of the browser window. This banner includes the name of the
worker and a UI button for terminating a selected worker. We implement the
terminate function by crafting the string "workers[i]+".terminate(). This
string contains the worker name and the method call to terminate. We call eval
on the string input to execute.

8 Related work

Security researchers have found numerous vulnerabilities in the HTML5 APIs
that enable traditional web application attacks such as CSRF and clickjacking,
and HTML5-specific attacks such as cache poisoning and botnets.

Tian et al. [18] show that the HTML5 screen-sharing API can allow for cross-
site request forgery (CSRF) attacks, even if the target website utilizes CSRF
defenses such SSL and secure random tokens. The authors are also able to sni↵
user account, autocomplete, and browsing history data because it can be viewed
directly on the user’s screen.

The HTML5 FullScreen API displays web content that fills the user’s entire
screen. Aboukhadijeh [3] describes how a malicious website can trick users into
clicking a link to a legitimate website (e.g., https://www.bankofamerica.com/),
and then display a malicious website in fullscreen.

Kuppan [13] overviews multiple HTML5-specific attacks. For example, an
attacker can use the HTML5 Drag and Drop API to trick users into setting target
form fields with attacker controlled data, a clickjacking attack. An attacker can
poison HTML5 caches designed to enable o✏ine browsing with her own pages
that recover user supplied data. Specific to our work, workers enable HTML5
botnets. These botnets can mount distributed denial-of-service (DDoS) attacks
by sending cross-domain XMLHttpRequests.

Anibal Sacco et al. [16] use workers to optimize heap-spray attacks. By
employing multiple workers, the authors show that they can populate the target
systems’ memory faster than conventional heap-spray attacks. They leverage
HTML5 canvas objects to obtain both full control over consecutive heap pages
and to provide byte-level access to pixel information. This gives four bytes per
pixel for use in spray contents – typically a use-after-free exploit, heap-based
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bu↵er overflow, or ROP chain. Also, due to the increasing prevalence of browser-
based devices with HTML5 support (smartphones, TVs, consoles, etc.) the use
of workers as an attack vector are largely platform and browser agnostic.

The Open Web Application Security Project (OWASP) blog [2] mentions
the use of workers to perform DoS attacks. The post gives a cursory treatment
of these vulnerabilities and does not provide any concrete details regarding
implementation, measurement, or countermeasures.

In general, defenses for HTML5 API vulnerabilities include modifications to
the APIs. Son and Shmatikov [17] find that many web applications perform origin
checks incorrectly, if at all. The lack of stringent checking allows for cross-site
scripting (XSS) attacks, as well as data injection into local storage. The authors
propose accepting only messages from the origin of the page that loaded a frame
and the parent of that frame.

Akhawe et al. [5] find that HTML5 web applications need better privilege
separation. Rather than advocate for browser redesign or artificial limits on
partitions, the authors propose a way for HTML5 applications to create an
arbitrary number of unprivileged components. Each component executes with its
own temporary origin, isolated from the rest of the components.

9 Conclusions

We described how the Web Workers API can be used to create workers that
enable stealthy computation and covert channels. We demonstrated the feasibility
of stealthy computation by implementing a distributed password cracker using
workers, a DoS attack against OS X, and a resource depletion attack against
Android. We evaluated the feasibility of a covert channel using CPU and memory
throttling, and implemented the latter. Lastly, we gave the first mitigation
strategy for the misuse of workers.
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Appendix: Health and Medical Systems

Health and medical systems are increasingly becoming networked. An industry
report by Parks Associates predicts that networked medical systems will exceed
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Fig. 5: Stealthy computation on Baxa ExactaMix.

14 million sales in 2018 [1]. These medical systems often employ commodity
operating systems such as Windows Embedded and can access and be accessed
over the internet.

We investigate the e↵ects of running stealthy computation on Baxa ExactaMix.
The Baxa ExactaMix is an embedded health and medical system that mixes
total parenteral nutrition and other multi-ingredient solutions. The compounder
runs Windows XP Embedded 2002 Service Pack 2 and has a 664 MHz VIA C5
x86 CPU with 496 MB of memory [8]. It also has Internet Explorer version 6.0,
which does not support HTML5 APIs. However, since the Baxa ExactaMix can
access the internet, we can install a modern browser. We installed Firefox 29 at
the time of this experiment. We note that modern medical systems use more
recent operating systems and thus support Web Workers without installing a
third-party browser.

In our experiment, we first start the Baxa ExactaMix and wait for it to run
its clinical software. We then begin measuring the CPU, memory, and swap usage
of the device to establish a baseline of activity. Next, we launch Firefox and
navigate to a website that we control. This website uses a worker to perform our
stealthy computation, specifically, the DoS attack we describe earlier in Section 5.
We continue our measurements for 3 minutes.

Results. We note a clear delineation between pre- and post-worker computation
in Figure 5. Memory and swap usage are at 60% and 20%, respectively, when the
Baxa ExactaMix first starts. As this is a single-core device, the CPU utilization
remains high for the entire experiment because all processes are scheduled to
execute on the same core. We note linearly increasing memory usage and a
near-instantaneous spike in swap usage to 60% when we visit our website that
performs the stealthy computation.
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Fig. 6: Stealthy computation on Ubuntu 15.10 using Firefox and Chrome.

Appendix: Linux Stealthy Computation

We experiment with stealthy computation on other operating systems. We find
that Chrome 48.0.2564.103 and Firefox 41.0.2 in Ubuntu 15.10 both allow stealthy
computation using web workers. Figure 6 illustrates CPU and memory throttling
in Chrome and Firefox. We can use these primitives to implement our covert
channel as described in Section 6.

We also test our DoS attack described in Section 5.1. This attack does not
work in Ubuntu, and Linux in general, because of how virtual memory and
processes are managed. Specifically, virtual memory consists both of RAM and
swap space. Swap space is managed as a file or partition on the hard disk, and
holds inactive memory pages. We fill the swap to its maximum allowed space and
note that the system becomes unresponsive. However, modern Linux distributions
will terminate processes that consume resources, thus, we notice that free memory
decreases and then rapidly increases when the process is killed in Figure 6.


